www.sciencedaily.com
16 Jan 2013
An assistant professor at the University of California, Riverside's Bourns College of Engineering is using the teeth of a marine snail found off the coast of California to create less costly and more efficient nanoscale materials to improve solar cells and lithium-ion batteries.
The most recent findings by David Kisailus, an assistant professor of chemical and environmental engineering, details how the teeth of chiton grow. The paper was published Jan. 16 in the journal Advanced Functional Materials. It was co-authored by several of his current and former students and scientists at Harvard University in Cambridge Mass., Chapman University in Orange, Calif. and Brookhaven National Laboratory in Upton, NY.
The paper is focused on the gumboot chiton, the largest type of chiton, which can be up to a foot-long. They are found along the shores of the Pacific Ocean from central California to Alaska. They have a leathery upper skin, which is usually reddish-brown and occasionally orange, leading some to give it the nickname "wandering meatloaf."
Over time, chitons have evolved to eat algae growing on and within rocks using a specialized rasping organ called a radula, a conveyer belt-like structure in the mouth that contains 70 to 80 parallel rows of teeth. During the feeding process, the first few rows of the teeth are used to grind rock to get to the algae. They become worn, but new teeth are continuously produced and enter the "wear zone" at the same rate as teeth are shed.
Kisailus, who uses nature as inspiration to design next generation engineering products and materials, started studying chitons five years ago because he was interested in abrasion and impact-resistant materials. He has previously determined that the chiton teeth contain the hardest biomineral known on Earth, magnetite, which is the key mineral that not only makes the tooth hard, but also magnetic.
Welcome to the Gippsland Friends of Future Generations weblog. GFFG supports alternative energy development and clean energy generation to help combat anthropogenic climate change. The geography of South Gippsland in Victoria, covering Yarram, Wilsons Promontory, Wonthaggi and Phillip Island, is suited to wind powered electricity generation - this weblog provides accurate, objective, up-to-date news items, information and opinions supporting renewable energy for a clean, sustainable future.
0 comments:
Post a Comment